Welcome to XPER documentation 📚! ================================= .. role:: bash(code) :language: bash This website contains the documentation for **installing** and **contributing** to **XPER**, details on the API, and a comprehensive list of the references of the datasets, models and metrics implemented. Resources ^^^^^^^^^ Free software: MIT license GitHub: https://github.com/hi-paris/XPER ----- Installation ^^^^^^^^^^^^ .. parsed-literal:: pip install XPER ----- Example of use of the library ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: python import XPER **1️⃣ Load the Data 💽** .. code-block:: python from XPER.datasets.load_data import loan_status import pandas as pd from sklearn.model_selection import train_test_split loan = loan_status().iloc[:, :6] X = loan.drop(columns='Loan_Status') Y = pd.Series(loan['Loan_Status']) X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.15, random_state=3) .. image:: ../images/dataset.png **2️⃣ Load the trained model or train your model ⚙️** .. code-block:: python from xgboost import XGBClassifier import xgboost as xgb # Create an XGBoost classifier object gridXGBOOST = xgb.XGBClassifier(eval_metric="error") # Train the XGBoost classifier on the training data model = gridXGBOOST.fit(X_train, y_train) **3️⃣ Monitor Performance 📈** .. code-block:: python from XPER.compute.Performance import ModelPerformance # Define the evaluation metric(s) to be used XPER_ = ModelPerformance(X_train.values, y_train.values, X_test.values, y_test.values, model) # Evaluate the model performance using the specified metric(s) PM = XPER_.evaluate(["AUC"]) # Print the performance metrics print("Performance Metrics: ", round(PM, 3)) .. image:: ../images/perf2.png :alt: metrics :width: 200 **For use cases above 10 feature variables it is advised to use the default option kernel=True for computation efficiency** ➡️ .. code-block:: python # Option 1 - Kernel True # Calculate XPER values for the model's performance XPER_values = XPER_.calculate_XPER_values(["AUC"]) .. image:: ../images/true.png :alt: metrics :width: 300 .. code-block:: python # Option 2 - Kernel False # Calculate XPER values for the model's performance XPER_values = XPER_.calculate_XPER_values(["AUC"], kernel=False) .. image:: ../images/false.png :alt: metrics :width: 300 **4️⃣ Visualisation 📊** .. code-block:: python import pandas as pd from XPER.viz.Visualisation import visualizationClass as viz labels = list(loan.drop(columns='Loan_Status').columns) Bar plot .. code-block:: python viz.bar_plot(XPER_values=XPER_values, X_test=pd.DataFrame(X_test), labels=labels, p=6, percentage=True) .. image:: ../images/bar.png Beeswarn plot .. code-block:: python viz.beeswarn_plot(XPER_values=XPER_values, X_test=pd.DataFrame(X_test), labels=labels) .. image:: ../images/be.png Force plot .. code-block:: python viz.force_plot(XPER_values=XPER_values, instance=1, X_test=X_test, variable_name=labels, figsize=(16,4)) .. image:: ../images/force.png Reference ^^^^^^^^^^^^ Hué, Sullivan, Hurlin, Christophe, Pérignon, Christophe and Saurin, Sébastien. "Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring". HEC Paris Research Paper No. FIN-2022-1463, Available at https://ssrn.com/abstract=4280563 or https://arxiv.org/abs/2212.05866, 2023. .. toctree:: :maxdepth: 2 :caption: Contents: modules Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`