XPER.compute package
- XPER.compute.Performance. evaluate(Eval_Metric, CFP=None, CFN=None) [source]
-
Evaluate the performance of the model using various evaluation metrics.
Parameters
- Eval_Metricstr or list
Evaluation metric(s) to compute. Options include: "AUC", "Accuracy", "Balanced_accuracy", "BS" (Brier Score), "MC" (Misclassification Cost), "Precision", "Sensitivity", "Specificity".
- CFPfloat
Cost of false positive.
- CFNfloat
Cost of false negative.
Returns
Performance Metrics: Computed performance metrics for the model.
Examples
from XPER.compute.Performance import ModelPerformance XPER = ModelPerformance(X_train.values, y_train.values, X_test.values, y_test.values, model) PM = XPER.evaluate(['AUC']) print("Performance Metrics: ", round(PM, 3))
Example output:

- XPER.compute.Performance. calculate_XPER_values(Eval_Metric, CFP=None, CFN=None, N_coalition_sampled=None, kernel=True, intercept=False, execution_type='ThreadPoolExecutor') [source]
-
Calculate XPER values for the model's performance.
Parameters
- Eval_Metricstr or list
Evaluation metric(s) for XPER calculation. Options include: "AUC", "Accuracy", etc.
- CFPfloat
Cost of false positive.
- CFNfloat
Cost of false negative.
- N_coalition_sampledint
Number of coalitions to consider in XPER calculation.
- kernelbool, optional
If
True
, use kernel approximation for XPER values. Default isTrue
.- interceptbool, optional
If
True
, include intercept in model. Default isFalse
.- execution_typestr, optional
Execution type for computation, "ThreadPoolExecutor" or "ProcessPoolExecutor". Default is "ThreadPoolExecutor".
Returns
XPER values: Computed XPER values for the specified metrics.
Examples
from XPER.compute.Performance import ModelPerformance XPER = ModelPerformance(X_train.values, y_train.values, X_test.values, y_test.values, model) # Option 1 - Kernel = True XPER_values = XPER.calculate_XPER_values(['AUC']) XPER_values = XPER.calculate_XPER_values(['AUC'], execution_type='ProcessPoolExecutor') # Option 2 - Kernel = False XPER_values = XPER.calculate_XPER_values(['AUC'], kernel=False)
Kernel True:

Kernel False:
